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GLOBAL STABILITY IN A COMPETITIVE INFECTION-AGE

STRUCTURED MODEL

Quentin Richard*

Abstract. We study a competitive infection-age structured SI model between two diseases. The well-
posedness of the system is handled by using integrated semigroups theory, while the existence and the
stability of disease-free or endemic equilibria are ensured, depending on the basic reproduction number
Rx

0 and Ry
0 of each strain. We then exhibit Lyapunov functionals to analyse the global stability and we

prove that the disease-free equilibrium is globally asymptotically stable whenever max{Rx
0 , R

y
0} ≤ 1.

With respect to explicit basin of attraction, the competitive exclusion principle occurs in the case where
Rx

0 6= Ry
0 and max{Rx

0 , R
y
0} > 1, meaning that the strain with the largest R0 persists and eliminates

the other strain. In the limit case Rx
0 = R0

y > 1, an infinite number of endemic equilibria exists and
constitute a globally attractive set.
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1. Introduction

In [27], Kermack and McKendrick proposed the first ODE epidemic model. Since then, the literature on this
topic is wide and such models are commonly used to predict the evolution of a disease and eventually prevent
the apparition of epidemics. Incorporating another continuous variable such as the age since infection [30, 31,
34, 46], the infection-load [39, 40] or the time remaining before disease detection [28], the so-called structured
epidemiological models are described by transport equations (we refer e.g. to [1, 25] for an introduction of such
models) and sometimes by transport-diffusion equations [3, 4]. In the present paper, we consider the following
infection-age structured SI model, that describes the competition between two diseases for a same susceptible
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dynamics, competitive exclusion.
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2 Q. RICHARD

population:

dS

dt
(t) = Λ− µSS(t)− S(t)

∫∞
0
βx(a)x(t, a)da− S(t)

∫∞
0
βy(a)y(t, a)da,

∂x

∂t
(t, a) +

∂x

∂a
(t, a) = −µx(a)x(t, a),

x(t, 0) = S(t)
∫∞

0
βx(a)x(t, a)da

∂y

∂t
(t, a) +

∂y

∂a
(t, a) = −µy(a)y(t, a),

y(t, 0) = S(t)
∫∞

0
βy(a)y(t, a)da

(S(0), x(0, ·), y(0, ·)) = (S0, x0, y0) ∈ R+ × L1
+(0,∞)× L1

+(0,∞)

(1.1)

for every t ≥ 0 and a ≥ 0. Such system can for example be used to describe competition between two strains
of a same disease, as influenza [9], malaria [12] or avian influenza [34]. It can also be used in other contexts as
competition between species for a same nutrient in a chemostat [43], or competition between predators for a
single ressource [14].

Here, S(t), x(t, a) and y(t, a) respectively denote the density of susceptible individuals at time t and both
infected populations of age a and at time t. The parameter Λ represents the recruitment flux into the susceptible
class while µS , µx and µy are the mortality rates of the three populations. Finally βx and βy describe the
transmission rates of both infected populations x and y. Let

βx = sup(supp(βx)), βy = sup(supp(βy))

(supp(·) denoting the support of any function) be the maximal age of infectiousness of the corresponding disease.
In the sequel, we will make the following assumption.

Assumption 1.1.

1. The parameters Λ, µS > 0 are positive and the functions µx, µy, βx, βy are in L∞(0,∞) with βx 6≡ 0 and
βy 6≡ 0. Moreover there exists µ0 > 0 such that:

min{µS , µx(a), µy(a)} ≥ µ0 a.e. a ≥ 0.

2. There exist βx ∈ [0, βx) and βy ∈ [0, βy) such that

βx(a) > 0 a.e. a ∈ [βx, βx), βy(a) > 0 a.e a ∈ [βy, βy).

Consequently to the latter assumption, the probabilities functions

πx : a 7→ e−
∫ a
0
µx(s)ds, πy : a 7→ e−

∫ a
0
µy(s)ds

describe the survival of the corresponding infected population. In the case βy ≡ 0, the system (1.1) becomes the
following infection-age structured model with only one disease:

dS(t)

dt
= Λ− µSS(t)− S(t)

∫∞
0
βx(a)x(t, a)da,

∂x(t, a)

∂t
+
∂x(t, a)

∂a
= −µx(a)x(t, a),

x(t, 0) = S(t)
∫∞

0
βx(a)x(t, a)da.

(1.2)
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This latter model (1.2) has been investigated by Thieme and Castillo-Chavez [45, 46] with the study of the
uniform persistence and local exponential asymptotic stability of the endemic equilibrium. Related epidemic
models with delay can be found e.g. in [35, 36]. Thereafter, Magal, McCluskey and Webb [30] handled the global
stability of the endemic equilibrium of (1.2), by proving the result below. First define the quantity

R0 =
Λ
∫∞

0
βx(a)e−

∫ a
0
µx(s)dsda

µS

describing the number of secondary infections produced by a single infected patient. This latter threshold is
commonly used in the litterature (see e.g. [22] or more recently [38] for an introduction). First appareared in a
demographic context with the work of Dublin and Lotka [13] (see more recently [26] Chap. 9 for more references),
it is now frequently used in epidemiology (see e.g. [10, 11]) to state if a disease will persist or disappear.

Proposition 1.2. Suppose that Assumption 1.1 holds. If R0 ≤ 1, then (1.2) admits only the disease-free equi-
librium ( Λ

µS
, 0) ∈ R+ ×L1

+(0,∞), while if R0 > 1 then there exists also a (unique) endemic equilibrium denoted

by E∗. Moreover, if R0 < 1 (resp. R0 = 1), then ( Λ
µS
, 0) is globally asymptotically stable in R+×L1

+(0,∞) (resp.

globally attractive). If R0 > 1 then the equilibrium E∗ is globally asymptotically stable in the set

S :=

{
(S0, x0) ∈ R+ × L1

+(0,∞) :

∫ βx

0

x0(s)ds > 0

}

while the disease-free equilibrium ( Λ
µS
, 0) is globally attractive in (R+ × L1

+(0,∞)) \ S.

The same result holds when interchanging the indexes x and y. At this point we can note that in [30], the
authors mentioned the global asymptotic stability of the disease-free equilibrium in the delicate case R0 = 1.
However, it seems that only the attractiveness is proved, by using Lyapunov functional. The same lack of proof
seems to appear also e.g. in [34, 39]. The reason for this is twofold. Firstly, in infinite dimensional systems, the
stability property is not ensured even if the attractiveness property is (see the Lasalle invariance principle [37]).
Secondly, the principle of linearisation used to get the local asymptotic stability fails when R0 = 1: indeed, we
obtain eigenvalues with real part equals to zero. However, we will show in Section 5.3 how to overcome the
stability in that case, by using some Lyapunov functional.

Recently, some papers considered structured epidemiological models with two groups of infections, or two
paths of infection (see e.g. [6, 8, 31]) by adding some interaction between the two groups. The global stability of
the equilibria and the persistence of the diseases are investigated, leading the to the existence of a R0 threshold.

A very similar model to (1.1) was analysed by Martcheva and Li [34], where they considered a SIR model
with n ≥ 2 different groups of infectious individuals, to see how the emergence of other diseases can affect
the dynamics of the susceptible population. The analyse leads to the existence of n thresholds, one for each
disease. Then, using persistence results and proving existence of a global attractor as in [30], they enlighten a
competitive exclusion principle, meaning that the disease with the biggest R0 value will asymptotically survive,
while the other strains will disappear. This fundamental result in ecology was first postulated by Gause [18].
We refer e.g. to [2, 9, 12] for similar structured models where this principle occurs.

We first define the following thresholds

Rx0 :=
Λrx
µS

, Ry0 :=
Λry
µS

where

rx :=

∫ ∞
0

βx(a)πx(a)da > 0, ry :=

∫ ∞
0

βy(a)πy(a)da > 0.
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The system (1.1) always admits the disease free equilibrium

E0 := (S∗0 , 0, 0) =

(
Λ

µS
, 0, 0

)
.

When Rx0 > 1 (resp. Ry0 > 1), we also have an endemic equilibrium given by

E1 := (S∗1 , x
∗
1, 0), (resp. E2 := (S∗2 , 0, y

∗
2))

where 
S∗1 =

1

rx

x∗1(a) =
µS(Rx0 − 1)

rx
πx(a),

S∗2 =
1

ry

y∗2(a) =
µS(Ry0 − 1)

ry
πy(a),

for every a ≥ 0. Finally, when Rx0 = Ry0 > 1, we have an infinite number of equilibria, given by

E∗α = (S∗, x∗α, y
∗
α), ∀α ∈ [1, 2]

with 

S∗ =
1

rx
=

1

ry

x∗α(a) =
µS(Rx0 − 1)

rx
(2− α)πx(a)

y∗α(a) =
µS(Ry0 − 1)

ry
(α− 1)πy(a)

for every a ≥ 0 and where we can note that E∗1 = E1 and E∗2 = E2. In order to analyse the asymptotic behaviour
of the solutions, we let X+ = R+ × L1

+(0,∞)× L1
+(0,∞) and we define the sets

Sx := {(S0, x0, y0) ∈ X+ :

∫ βx

0

x0(s)ds > 0}, ∂Sx = X+ \ Sx,

Sy := {(S0, x0, y0) ∈ X+ :

∫ βy

0

y0(s)ds > 0}, ∂Sy = X+ \ Sy

containing initial infected populations that are in age to contaminate susceptible individuals, with the corre-
sponding disease, now or in the future. The convergence results, obtained in the present paper, that depend on
the thresholds Rx0 , R

y
0 and on the initial condition, are summed up in the following table:

We notice that for each k ∈ {x, y}, when taking an initial condition in ∂Sk the solutions behave as in the case
(1.2), that is to say either the initial condition is taken in ∂Sk and the solution goes to E0, or it is taken in Sk and
the fate of the solution depends on the threshold Rk0 . Furthermore, we prove that for each value Rx0 and Ry0 , the
equilibria E0, E1 and E2 are globally asymptotically stable in the corresponding basin of attraction, according
to Figure 1. The competitive exclusion principle is then verified and we also handle e.g. the global asymptotic
stability of E0 in X+ when max{Rx0 , R

y
0} = 1. However, the stability of the set of equilibria {E∗α, α ∈ [1, 2]} is

left open.
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Figure 1. Convergence of the solutions depending on Rx0 , R
y
0 and on the initial condition.

We first use the integrated semigroup theory, following [30], to get an appropriate framework in order to
prove that (1.1) is well-posed. It also allows us to linearise the system around each equilibrium, obtaining linear
C0-semigroups, then we use spectral theory to get the local stability of the equilibria (see e.g. [16, 48, 49] for
more results on this topic). In [30], the authors combine uniform persistence results due to Hale and Waltman
[21], with results obtained in [33], to get the existence of a global attractor. While the same approach was used
in [34], we follow [39] and we take advantages of an explicit formulation of the semiflow that enables us to
exhibit the compactness of the orbits.

The method then used to perform the global analysis is based on the existence of a Lyapunov function (see
e.g. [24] for a survey of such functions in various ecological ODE and reaction-diffusion models). We therefore
use the following key non-negative function:

g : R∗+ −→ R
x 7−→ x− ln(x)− 1

(1.3)

that was first used by Goh [19] and Hsu [23]. For the present model, we shall also use the following Volterra-type
Lyapunov, incorporating the age-structure:

φ 7−→ x∗
∫ ∞

0

Ψ(a)x∗(a)g

(
φ(a)

x∗(a)

)
da

for any function φ > 0 a.e. with x∗ the equilibrium and φ some appropriate function. It was introduced in
[30], and was later used e.g. in [12, 31, 34, 39] for structured models. Note that similar functionals are used for
delayed equations (see e.g. [41] and the references therein). The latter attractiveness combined with the stability
then yield the global asymptotic stability of the corresponding equilibrium.

Note that the technique used in the present paper, contrarily to [34], allows us to study the case where
the maximal reproduction number is not unique, that is when Rx0 = Ry0 . As written in Figure 1, the set of
equilibria {E∗α, α ∈ [1, 2]} is proved to be globally attractive in Sx ∩ Sy. Finally, following [17] and [41], we
handle the stability of the disease-free equilibrium E0 in the case max{Rx0 , R

y
0} = 1, by making use of the

Lyapunov functionals.
This article is structured as follows: in Section 2 we give the preliminaries results concerning existence,

uniqueness and boundedness of the solutions. In Section 3 we handle the stability of each equilibrium. Section 4
then deals with the existence of a compact attractor for the dynamical system and the identification of the basins
of attraction. In Section 5 we investigate the global analysis of (1.1). We start by defining suitable Lyapunov
functionals and proving their well-posedness. It allows to prove on one hand the global attractiveness of each
equilibrium, by using a Lasalle invariance principle theorem, and on the other hand the stability of the disease
free equilibrium when the principle of linearisation fails. Finally, we conclude about the global stability of each
equilibrium. We end the paper with some numerical simulations in Section 6 to illustrate the above results.
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2. Well-posedness

2.1. Integrated semigroup formulation

In this section, we handle the well-posedness of (1.1). To this end, we follow [30] and we use integrated
semigroups theory (see e.g. [32] and the references therein for more details), whose approach was introduced by
Thieme [44]. First we consider the space

X̂ = R× L1(0,∞)

then we define the linear operators Âx : D(Âk) ⊂ X̂ → X̂ and Ây : D(Âk) ⊂ X̂ → X̂ by

Âx

(
0
φ

)
=

(
−φ(0)
−φ′ − µxφ

)
, Ây

(
0
φ

)
=

(
−φ(0)
−φ′ − µyφ

)
with

D
(
Âx

)
= D

(
Ây

)
= {0} ×W 1,1(0,∞).

If λ ∈ C is such that <(λ) > −µ0, then λ ∈ ρ(Âx) ∩ ρ(Ây) (the resolvent sets of Âx and Ây respectively), and

we have the following explicit formula for the resolvent of Âk (with k ∈ {x, y}):

(
λI − Âk

)−1
(
c
ψ

)
=

(
0
φ

)
⇐⇒ φ(a) = ce−

∫ a
0

(µk(s)+λ)ds +

∫ a

0

e−
∫ a
s

(µk(ξ)+λ)dξψ(s)ds. (2.1)

We can notice that (1.1) is equivalent to

S′(t) = Λ− µSS(t)− S(t)
∫∞

0
βx(a)x(t, a)da− S(t)

∫∞
0
βy(a)y(t, a)da,

d

dt

(
0

x(t, ·)

)
= Âx

(
0

x(t, ·)

)
+

(
S(t)

∫∞
0
βx(a)x(t, a)da

0

)
,

d

dt

(
0

y(t, ·)

)
= Ây

(
0

y(t, ·)

)
+

(
S(t)

∫∞
0
βy(a)y(t, a)da

0

)
,

(S(0), x(0, ·), y(0, ·)) = (S0, x0, y0) ∈ R+ × L1
+(0,∞)× L1

+(0,∞).

(2.2)

Defining

x̂(t) =

(
0

x(t, ·)

)
, ŷ(t) =

(
0

y(t, ·)

)
we can then rewrite (2.2) as an ordinary differential equation coupled with two non-densely defined Cauchy
problem: 

dS

dt
= −µSS(t) + F1(S(t), x̂(t), ŷ(t)),

dx̂(t)

dt
= Âxx̂(t) + F2(S(t), x̂(t), ŷ(t)),

dŷ(t)

dt
= Ây ŷ(t) + F3(S(t), x̂(t), ŷ(t)),
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where

F1

(
S,

(
0
x

)
,

(
0
y

))
= Λ− S

∫ ∞
0

βx(a)x(a)da− S
∫ ∞

0

βy(a)y(a)da,

F2

(
S,

(
0
x

)
,

(
0
y

))
=

(
S
∫∞

0
βx(a)x(a)da

0

)
and

F3

(
S,

(
0
x

)
,

(
0
y

))
=

(
S
∫∞

0
βy(a)y(a)da

0

)
.

Consider the sets

X = R×
(
R× L1(0,∞)

)2
, X+ = R+ ×

(
R+ × L1

+(0,∞)
)2

and define the linear operator A : D(A) ⊂ X → X by

A


S(
0
x

)
(

0
y

)
 =


−µSS

Âx

(
0
x

)
Ây

(
0
y

)


with

D(A) = R×D(Âx)×D(Ây).

We then see that

D(A) = R×
(
{0} × L1(0,∞)

)2
(the closure of D(A)), so that D(A) is not dense in X. Now, define the non-linear function F : D(A)→ X by

F


S(
0
x

)
(

0
y

)
 =


F1

(
S,

(
0
x

)
,

(
0
y

))
F2

(
S,

(
0
x

)
,

(
0
y

))
F3

(
S,

(
0
x

)
,

(
0
y

))


then let

X0 := D(A) = R×
(
{0} × L1(0,∞)

)2
and its positive cone

X0+ := D(A) ∩X+ = R+ ×
(
{0} × L1

+(0,∞)
)2
.
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We can thus rewrite (1.1) as the following abstract Cauchy problem:{
du

dt
(t) = Au(t) + F (u(t)),∀t ≥ 0

u(0) = u0 ∈ X0

(2.3)

where u(t) := (S(t), x(t, ·), y(t, ·)) and u0 = (S0, x0, y0).

2.2. Local existence and positivity

Using the above semigroup formulation, we can state the classical following result:

Proposition 2.1. Suppose that Assumption 1.1 holds. Then there exists a unique continuous semiflow
{U(t)}t≥0 on X0+ such that for every z ∈ X0+ there exist tmax ≤ ∞ and a continuous map U ∈ C([0, tmax), X0+)
which is an integrated solution of (2.3), i.e. such that

∫ t

0

U(s)zds ∈ D(A), ∀t ∈ [0, tmax)

and

U(t)z = z +A

∫ t

0

U(s)zds+

∫ t

0

F (U(s)z)ds, ∀t ∈ [0, tmax).

Proof. On one hand, the explicit expression (2.1) of the resolvent of Âk for each k ∈ {x, y} ensures us that

∥∥(λ−A)−n
∥∥ ≤ c

(λ+ µ0)n

for some c > 0 and for every n ≥ 1, so that A is a Hille-Yosida operator with (−µ0,∞) ⊂ ρ(A). On the other
hand, we can check that the non-linear function F is Lipschitz continuous. Using ([29], Prop. 3.2) or ([5], Prop.
4.3.3, p. 56) we get the local existence. Now, from (2.1) we deduce that A is resolvent positive, that is to say

(λI −A)−1X+ ⊂ X+, ∀λ ∈ ρ(A).

Moreover, the expression of the non-linearity F implies that for every r > 0, there exists c ≥ 0 such that

F (z) + cz ∈ X+, ∀z ∈ B(0, r) ∩X0+

where B(0, r) denotes the ball of X, centred in 0 ∈ X and with radius r. Finally, using ([29], Prop. 3.6), we get
the non-negativity of the solution.

2.3. Boundedness and global existence

Let the Banach space

X := R× L1(0,∞)× L1(0,∞)

endowed with the usual norm and denote by X+ its positive cone. We are ready to give the main result of this
section:
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Theorem 2.2. Suppose that Assumption 1.1 holds. Then for every z = (S0, x0, y0) ∈ X+, there exists a unique
mild solution (S, x, y) ∈ C(R+,X+), that induces a continuous semiflow via:

Φ : R+ ×X+ 3 (t, z) 7−→ Φt(z) = (S(t), x(t, ·), y(t, ·)).

Moreover, the semiflow Φt = (ΦSt ,Φ
x
t ,Φ

y
t ) rewrites using Duhamel formulation as follows:

Φt(z) = (0,Φx,1t (z),Φy,1t (z)) + (ΦSt (z),Φx,2t (z),Φy,2t (z))

with ΦSt (z) > 0 for every t > 0 and every z ∈ X+. Finally, Φxt and Φyt are given by:

Φx,1t (z)(a) = x0(a− t)e−
∫ t
0
µx(s)dsχ[t,∞)(a), (2.4)

Φx,2t (z)(a) = ΦSt−a(z)

∫ ∞
0

βx(s)Φxt−a(z)(s)dse−
∫ a
0
µx(u)duχ[0,t](a), (2.5)

Φy,1t (z)(a) = y0(a− t)e−
∫ t
0
µy(s)dsχ[t,∞)(a), (2.6)

Φy,2t (z)(a) = ΦSt−a(z)

∫ ∞
0

βy(s)Φyt−a(z)(s)dse−
∫ a
0
µy(u)duχ[0,t](a) (2.7)

where χ denotes the characteristic function. Moreover, there exists a constant k (independent of z), such that

lim sup
t→∞(z)

S(t) ≤ k, lim sup
t→∞(z)

x(t, a) ≤ ke−µ0a, lim sup
t→∞(z)

y(t, a) ≤ ke−µ0a.

Proof. Let z := (S0, x0, y0) ∈ X+ and (S, x, y) ∈ C([0, tmax),X+) be the solution of (1.1). Suppose by
contradiction that tmax <∞. It would imply by ([29], Thm. 3.3) or ([5], Thm. 4.3.4, p. 57) that

lim
t→tmax

(S(t) + ‖x(t, ·)‖L1 + ‖y(t, ·)‖L1) =∞. (2.8)

From (1.1) we see that

S′(t) ≤ Λ− µSS(t)

for any t ≥ 0, which implies that

lim sup
t→tmax

S(t) ≤ Λ

µS
+

(
S0 −

Λ

µS

)
e−µ0tmax (2.9)

by using a Gronwall argument. Now, an integration of (1.1) leads to

d
∫∞

0
x(t, a)da

dt
= S(t)

∫ ∞
0

βx(a)x(t, a)da−
∫ ∞

0

µx(a)x(t, a)da
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since x(t, ·) ∈W 1,1(0,∞) and x(t, a) −−−→
a→∞

0 for each t ∈ [0, tmax(z)). Thus we have

S′(t) +
d
∫∞

0
x(t, a)da

dt
≤ Λ− µ0

(
S(t) +

∫ ∞
0

x(t, a)da

)
and then

lim sup
t→tmax(z)

∫ ∞
0

x(t, a)da ≤ Λ

µ0
+

(
S0 + ‖x0‖L1(0,∞) −

Λ

µ0

)
e−µ0tmax . (2.10)

Similarly, we get

lim sup
t→tmax(z)

∫ ∞
0

y(t, a)da ≤ Λ

µ0
+

(
S0 + ‖y0‖L1(0,∞) −

Λ

µ0

)
e−µ0tmax . (2.11)

Consequently, we get a contradiction with (2.3) and then tmax =∞. Finally, from (2.9)–(2.11), we deduce that
the solutions are asymptotically uniformly bounded, since the bound do not depend on the initial condition.

3. Equilibria and their stability

As mentioned in the introduction, we have the following result concerning the existence of equilibria:

Proposition 3.1. Suppose that Assumption 1.1 holds. Then there hold that

1. if max{Rx0 , R
y
0} ≤ 1 then there is only one equilibrium that is E0;

2. if Rx0 > 1 ≥ Ry0 then there are two equilibria: E0 and E1;
3. if Rx0 ≤ 1 < Ry0 then there are two equilibria: E0 and E2;
4. if Rx0 > 1, Ry0 > 1 and Rx0 6= Ry0 then there are three equilibria that are E0, E1 and E2;
5. if Rx0 = Ry0 > 1 then there are an infinite number of equilibria given by E0 and {E∗α, α ∈ [1, 2]}.

We start by reminding the following classical definition

Definition 3.2. Let S ⊂ X+ be a subset of X+ and E be an equilibrium of (1.1). Then we say that E is

– (Lyapunov) stable in S if for every ε > 0, there exists η > 0 such that for every z ∈ S:

‖z − E‖X ≤ η ⇒ ‖Φt(z)− E‖X ≤ ε, ∀t ≥ 0;

– unstable if E is not stable in X+;
– locally attractive in S if there exists η > 0 such that for every z ∈ S satisfying ‖z − E‖X ≤ η, then

lim
t→∞

‖Φt(z)− E‖X = 0, (3.1)

– locally asymptotically stable (L.A.S.) in S if E is stable and locally attractive in S;
– globally attractive in S if for every z ∈ S, (3.1) is satisfied;
– globally asymptotically stable (G.A.S.) in S if E∗ is stable and globally attractive in S.

In the following, for notational simplicity, we will not specify the subset S if the latter is the whole positive
cone, i.e. when S = X+. We now handle the stability of the equilibria formerly defined.

Proposition 3.3. Suppose that Assumption 1.1 holds. Then the following hold:

1. if max{Rx0 , R
y
0} < 1 (resp. > 1) then E0 is L.A.S. (resp. unstable);
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2. if Rx0 > max{1, Ry0} then E1 is L.A.S. If Ry0 > Rx0 > 1, then E1 is unstable.
3. if Ry0 > max{1, Rx0} then E2 is L.A.S. If Rx0 > Ry0 > 1, then E2 is unstable;
4. if Rx0 = Ry0 > 1, then for each α ∈ [1, 2], the equilibrium E∗α is not L.A.S. in X+.

Proof. Let E := (S, x, y) be an equilibrium of (1.1), then the linearised system of (1.1) around E is: du(t)

dt
= Au(t) +DFE(u(t)), ∀t ≥ 0,

u(0) = u0 ∈ D(A)

where DFE : X → X denotes the differential of F around E and is defined by:

DFE :


b1
b2
φ
b3
ψ

 =


−S

∫∞
0
βx(a)φ(a)da− b1

∫∞
0
βx(a)x(a)da− S

∫∞
0
βy(a)ψ(a)da− b1

∫∞
0
βy(a)y(a)da

S
∫∞

0
βx(a)φ(a)da+ b1

∫∞
0
βx(a)x(a)da

0

S
∫∞

0
βy(a)ψ(a)da+ b1

∫∞
0
βy(a)y(a)da

0

 .

Let A0 be the part of A inD(A), i.e. A0 : D(A) 3 z 7−→ A0z := AzD(A), then denote by {TA0(t)}t≥0 the positive
semigroup generated by A0. From (2.1), we know that (−µ0,∞) ⊂ ρ(A0) and consequently s(A0) ≤ −µ0 < 0
(where s(A0) is the spectral bound of A0).

Since the semigroup {TA0
(t)}t≥0 is positive, then ω0({TA0

(t)}t≥0) = s(A0) (where ω0 denotes the growth
bound) by using ([16], Thm. VI. 1.15, p. 358). Moreover, we know that ωess({TA0

(t)}t≥0), the essential growth
bound of {TA0}t≥0, satisfies ωess({TA0(t)}t≥0) ≤ ω0({TA0(t)}t≥0). We then have on one hand:

ωess({TA0
(t)}t≥0) ≤ −µ0 < 0.

On the other hand, from its above expression, we see that DFE(X) is finite dimensional, so that DFE is a
compact bounded operator. From ([15], Thm. 1.2) we get

ωess({T(A+DFE)0
(t)}t≥0) = ωess({TA0(t)}t≥0) ≤ −µ0 < 0

where {T(A+DFE)0
(t)}t≥0 is the C0 semigroup generated by (A+DFE)0, that is the part of A+DFE in D(A).

From ([16], Cor. IV. 2.11, p. 258), we deduce that

{λ ∈ σ((A+DFE)0),<(λ) ≥ −µ0}

is finite and composed (at most) of isolated eigenvalues with finite algebraic multiplicity, where σ(.) denotes
the spectrum. Consequently, it remains to study the punctual spectrum of (A+DFE)0. Using ([48] Prop. 4.19,
p. 206), we know that if s(A + DFE) < 0 then E is L.A.S., while if s(A + DFE) > 0 then E is unstable. We
consider exponential solutions, i.e. of the form u(t) = eλtv, with 0 6= v := (S, x, y) ∈ D(A) and λ ∈ C. We obtain
the following system:

λS = −µSS − S
∫∞

0
βx(a)x(a)da− S

∫∞
0
βx(a)x(a)da− S

∫∞
0
βy(a)y(a)da− S

∫∞
0
βy(a)y(a)da,

x′(a) = −µx(a)x(a)− λx(a),

y′(a) = −µy(a)y(a)− λy(a),

x(0) = S
∫∞

0
βx(a)x(a)da+ S

∫∞
0
βx(a)x(a)da,

y(0) = S
∫∞

0
βy(a)y(a)da+ S

∫∞
0
βy(a)y(a)da.
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We then get

x(a) = x(0)πx(a), y(a) = y(0)πy(a)

for every a ≥ 0,

S

(
λ+ µS +

∫ ∞
0

βx(a)x(a)da+

∫ ∞
0

βy(a)y(a)da

)
=− S

(
x(0)

∫ ∞
0

βx(a)πx(a)e−λada+ y(0)

∫ ∞
0

βy(a)πy(a)e−λada

)
(3.2)

and {
x(0)

(
1− S

∫∞
0
βx(a)πx(a)e−λada

)
= S

∫∞
0
βx(a)x(a)da,

y(0)
(
1− S

∫∞
0
βy(a)πy(a)e−λada

)
= S

∫∞
0
βy(a)y(a)da,

(3.3)

with (S, x(0), y(0)) 6= (0, 0, 0).

1. Let E := E0. From (3.2)–(3.3), we get:

S∗0

(
x(0)

∫ ∞
0

βx(a)πx(a)e−λada+ y(0)

∫ ∞
0

βy(a)πy(a)e−λada

)
= −S (λ+ µS)

x(0)

(
1− S∗0

∫ ∞
0

βx(a)πx(a)e−λada

)
= 0,

y(0)

(
1− S∗0

∫ ∞
0

βy(a)πy(a)e−λada

)
= 0,

Suppose first that max{Rx0 , R
y
0} > 1. Without loss of generality, we can suppose that Rx0 > 1. We see that

the function

f : R 3 λ 7−→ S∗0

∫ ∞
0

βx(a)πx(a)e−λada ∈ R

is strictly decreasing, with f(0) = Rx0 > 1. We see that there exists λ∗ > 0 such that f(λ∗) = 1, and
considering e.g.

(S, x(0), y(0)) =

(
S∗0
∫∞

0
βx(a)πx(a)e−λ

∗ada

λ∗ + µS
, 1, 0

)

we deduce that s(A+DFE0) ≥ λ∗ > 0 so E0 is unstable. Suppose now that max{Rx0 , R
y
0} < 1 and that there

exists λ ∈ σ(A+DFE0) such that <(λ) ≥ 0. If y(0) 6= 0, then we have

1 = S∗0

∫ ∞
0

βy(a)πy(a)e−λada ≤ Ry0 < 1.

so we have y(0) = 0. Likewise we deduce that x(0) = 0, but it then follows that S = 0, which is absurd.
Consequently E0 is L.A.S.
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2. Let E := E1. From (3.2)–(3.3), we get:

S∗1

(
x(0)

∫ ∞
0

βx(a)πx(a)e−λada+ y(0)

∫ ∞
0

βy(a)πy(a)e−λada

)
= −S (λ+ µSR

x
0)

x(0)

(
1− S∗1

∫ ∞
0

βx(a)πx(a)e−λada

)
= SµS(Rx0 − 1),

y(0)

(
1− S∗1

∫ ∞
0

βy(a)πy(a)e−λada

)
= 0.

Suppose that Ry0 > Rx0 > 1, then when y(0) 6= 0, we obtain

S∗1

∫ ∞
0

βy(a)πy(a)e−λada = 1.

We see that the function

f : R 3 λ 7−→ S∗1

∫ ∞
0

βy(a)πy(a)e−λada

is strictly decreasing, with f(0) = S∗1ry = rx
ry
> 1, and we deduce that s(A+DEE1) > 0 so E1 is unstable.

Suppose now that Rx0 > max{Ry0 , 1} and that λ ∈ σ(A+DEE1
) with <(λ) ≥ 0. If y(0) 6= 0 then

S∗1

∫ ∞
0

βy(a)πy(a)e−λada ≤ ry
rx

< 1

which is absurd, so y(0) = 0. We deduce that

S∗1

(
x(0)

∫ ∞
0

βx(a)πx(a)e−λada

)
= −S (λ+ µSR

x
0)

x(0)

(
1− S∗1

∫ ∞
0

βx(a)πx(a)e−λada

)
= SµS(Rx0 − 1)

whence

1 = S∗1

∫ ∞
0

βx(a)πx(a)e−λada−
S∗1µS(Rx0 − 1)

∫∞
0
βx(a)πx(a)e−λada

λ+ µSRx0

= S∗1

∫ ∞
0

βx(a)πx(a)e−λada

(
λ+ µS
λ+ µSRx0

)
so

λ+ µSR
x
0

λ+ µS
= S∗1

∫ ∞
0

βx(a)πx(a)e−λada.

Considering real and imaginary parts of λ, we get:

((<(λ) + µSR
x
0) + i=(λ)) ((<(λ) + µS)− i=(λ))

(<(λ) + µS)
2

+ =(λ)2
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= S∗1

∫ ∞
0

βx(a)πx(a)e−<(λ)a (cos(a=(λ)) + i sin(a=(λ))) da

then identifying the real part, we obtain:

(<(λ) + µSR
x
0)(<(λ) + µS) + =(λ)2

=
(
(<(λ) + µS)2 + =(λ)

)
S∗1

∫ ∞
0

βx(a)πx(a)e−<(λ)a cos(a=(λ))da.

It follows that

0 < µS(Rx0 − 1)(<(λ) + µS) =
(
(<(λ) + µS)2 + =(λ)2

)(
S∗1

∫ ∞
0

βx(a)πx(a)e−<(λ)a cos(a=(λ))da− 1

)
≤
(
(<(λ) + µS)2 + =(λ)2

)(ry
rx
− 1

)
≤ 0

since <(λ) ≥ 0. We deduce that s(A+DEE1) < 0 and E1 is L.A.S.
3. Similar arguments as for the latter point allow us to prove the result for E2.
4. Suppose that Rx0 = Ry0 > 1. Let α ∈ [1, 2]. Since the set of equilibria {E∗a , a ∈ [1, 2]} is compact, we can prove

that for every η > 0 there exists α̃ ∈ [1, 2] \ {α} such that ‖E∗α̃ − E∗α‖X ≤ η. Moreover, by definition of E∗α̃,
we have

lim
t→∞

‖Φt(E∗α̃)− E∗α‖X = ‖E∗α̃ − E∗α‖X > 0

hence E∗α is not locally attractive, and therefore not L.A.S.

4. Compact attractor and basins of attraction

4.1. Preliminaries

In the sequel, we will denote by Oz = {Φt(z), t ≥ 0} the orbit starting from z ∈ X+ and

ω(z) =
⋂
τ≥0

{Φt(z), t ≥ τ}

the ω-limit set of z. We follow ([39], Sect. 3), to prove the existence of a compact attractor.

Lemma 4.1. For every z ∈ X+, the orbit Oz ⊂ X+ is relatively compact, i.e. Oz is compact.

Proof. Define the ball Br := {z̃ ∈ X , ‖z̃‖X ≤ r} for any r > 0. From (2.4)–(2.6), we see that for every r > 0 and
every z ∈ X+ ∩Br, we have ∥∥∥(0,Φx,1t ,Φy,1t

)∥∥∥
X
≤ 2re−µ0t, ∀t ≥ 0.

Moreover we can prove that for any t ≥ 0, (ΦSt ,Φ
x,2
t ,Φy,2t ) maps bounded sets of X+ into relatively compact sets

in X . Indeed, let M ⊂ X+ be a bounded subset of X , i.e. there exists r > 0 such that ‖z‖X ≤ r for any z ∈M .
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First, we see that ΦSt (M) is relatively compact since it is finite dimensional. Moreover, from Theorem 2.2, we
deduce that for every t ≥ 0, there exists a constant c(r) > 0 such that∫ ∞

0

Φxt−a(z)(s)ds ≤ c,
∫ ∞

0

Φyt−a(z)(s)ds ≤ c

for any a ∈ [0, t] and every z ∈M . Using (2.5)–(2.7), we deduce that

Φx,2t (z)(a) ≤ r‖βx‖L∞ce−µ0aχ[t,∞)(a), Φy,2t (z)(a) ≤ r‖βy‖L∞ce−µ0aχ[t,∞)(a)

for any (t, z) ∈ R+ ×M . Finally, the Fréchet-Kolmogorov theorem ensures that the sets Φx,2t (M) and Φy,2t (M)
are relatively compact. From ([48], Prop. 3.1.3 p. 100), we deduce that for every z ∈ X+, the orbit Ox is relatively
compact.

The latter compactness result of the orbits then leads to the existence of a compact attractor in the following
sense (see e.g. [20], Lem. 3.1.1 and 3.1.2, p. 36, or [47], Thm. 4.1, p. 167).

Lemma 4.2. For every z ∈ X+,

1. ω(z) is non-empty, compact and connected;
2. ω(z) is invariant under Φt, i.e. Φt(ω(z)) = ω(z);
3. ω(z) is an attractor, i.e. limt→∞ d(Φt(z), ω(z)) = 0.

We remind the following classical result and we give its proof for completeness.

Lemma 4.3. Let c ∈ (0,∞), k ∈ (0,∞) and u be the solution of the PDE:
∂v(t, a)

∂t
+
∂v(t, a)

∂a
= −µx(a)v(t, a),

v(t, 0) = k

∫ c

0

βx(a)v(t, a)da,

v(0, a) = v0(a)

for every a ∈ (0, c) and every t ≥ 0. Suppose that u0 ∈ L1
+(0, c) \ {0} and that

k

∫ c

0

βx(a)πx(a)da > 1

then

lim
t→∞

∫ c

0

v(t, a)da =∞.

The same holds when replacing x by y.

Proof. Define the linear operator A : D(A) ⊂ L1(0, c)→ L1(0, c) by

Au = −u′ − µxu

with

D(A) :=

{
u ∈W 1,1(0, c), u(0) = k

∫ c

0

βx(a)u(a)da

}
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where W 1,1(0, c) :=
{
u ∈ L1(0, c), u′ ∈ L1(0, c)

}
is the Sobolev space. It is classical that A generates a positive

C0-semigroup {TA(t)}t≥0. Since [0, c] is compact, thenA has a compact resolvent, and consequently the spectrum
of A is composed at most of isolated eigenvalues with finite algebraic multiplicity. This follows from the fact
that the canonical injection i : (D(A), ‖ · ‖D(A) → (L1(0, c), ‖ · ‖L1(0,c)) is compact by the Rellich-Kondrachov
Theorem. Any eigenvalue of A has to satisfy:

u′ + λu+ µxu = 0

where u ∈ D(A). We hence get the following characteristic equation:

1 = k

∫ c

0

βx(a)e−λaπx(a)da

which is satisfied for some λ > 0 by definition of ε. Now we prove that (λ−A)−1 is positivity improving for λ
large enough, i.e. (λ−A)−1h(s) > 0 a.e. s ∈ [0, c] for any h ∈ L1

+(0, c) \ {0}. Let ν > 0, h ∈ L1
+(0, c) \ {0} and

u = (λ−A)−1h. Then we have

u′ + λu+ µxu = h

with u ∈ D(A), i.e.

u(a) = u(0)e−λa−
∫ a
0
µx(s)ds +

∫ a

0

h(s)e−λ(a−s)−
∫ a
s
µ(ξ)dξds

= k

(∫ c

0

βx(s)u(s)ds

)
e−λa−

∫ a
0
µx(s)ds +

∫ a

0

h(s)e−
∫ a
s

(λ+µx(ξ))dξds

and for λ > 0 large enough, we get(
1− k

∫ c

0

βx(a)e−λaπx(a)da

)∫ c

0

βx(a)u(a)da =

∫ c

0

βx(a)

∫ a

0

h(s)e−
∫ a
s

(λ+µx(ξ))dξdsda.

We see that ∫ c

0

βx(a)

∫ a

0

h(s)e−λ(a−s)−
∫ a
s
µx(ξ)dξdsda > 0

whence
∫ c

0
βx(a)u(a)da > 0 and u(a) > 0 for every a ∈ [0, c]. We deduce that (λ−A)−1 is positivity improving.

Using ([7], p. 165), we deduce that {TA(t)}t≥0 is irreducible, i.e. for any φ ∈ L1
+(0,∞) \ {0} and any ψ ∈

L∞+ (0,∞) \ {0}, there exists t > 0 such that 〈TA(t)φ, ψ〉 > 0, where 〈·, ·〉 denotes the duality pairing between
L1 and L∞. Since the semigroup is positive, we know that

ω0({TA(t)}t≥0) = s(A) > 0.

Moreover, since the spectrum of A is punctual, then

ωess ({TA(t)}t≥0) = −∞.

Consequently {TA(t)}t≥0 is both irreducible and has a spectral gap (i.e. ω0 > ωess). On one hand we know that
s(A) is a simple pole of the resolvent of A, with geometric multiplicity equal to one (see e.g. [7], p. 224). On
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the other hand, consequently to ([7], Thm. 9.11. p. 224) we get

lim
t→∞

∥∥∥e−s(A)tTA(t)f − Pf
∥∥∥
L1(0,c)

= 0

for every f ∈ L1(0, c), where P is the projection on Ker(λ−A) along R(λ−A), that is an operator of rank one
and positivity improving. Since v0 ∈ L1

+(0, c) \ {0}, then we deduce that Pv0(a) > 0 for a.e. a ∈ (0, c) and that

limt→∞ e−s(A)t = 0. Thus we obtain

lim
t→∞

∫ c

0

TA(t)v0(a)da = lim
t→∞

∫ c

0

v(t, a)da =∞.

4.2. Basins of attraction

We now give some results about the attractive sets, depending on the initial condition as well as the thresholds
Rx0 and Ry0 .

Proposition 4.4. Suppose that Assumptions 1.1 holds, then:

1. the sets ∂Sx and ∂Sy are positively invariant, i.e. Φt(∂Sx) ⊂ ∂Sx and Φt(∂Sy) ⊂ ∂Sy, ∀t ≥ 0. Moreover,
for every z := (x0, y0, z0) ∈ ∂Sx (respectively z ∈ ∂Sy), then

‖Φxt (z)‖L1(R+) ≤ ‖x0‖L1(R+)e
−µ0t,

(
resp. ‖Φyt (z)‖L1(R+) ≤ ‖y0‖L1(R+)e

−µ0t
)

(4.1)

for every t ≥ 0;
2. the equilibrium E0 is globally exponentially stable for Φt restricted to ∂Sx ∩ ∂Sy;
3. there exists c > 0 such that for every z ∈ X+ we have:

lim inf
t→∞

ΦSt (z) ≥ c;

4. for every z ∈ Sx (resp. z ∈ Sy), there exists τ ≥ 0 such that∫ ∞
0

βx(a)Φxt (z)(a)da > 0 (resp.

∫ ∞
0

βy(a)Φyt (z)(a)da > 0)

for every t ≥ τ . Moreover, the sets Sx and Sy are asymptotically positively invariant, i.e. for every z ∈ Sx
(resp. z ∈ Sy), there exists τ ≥ 0 such that Φt(z) ∈ Sx (resp. Φt(z) ∈ Sy) for every t ≥ τ .

5. Let z ∈ ∂Sx, then ‖Φxt (z)‖L1(0,∞) ≤ e−µ0t‖Φx0(z)‖L1(0,∞) for every t ≥ 0. Moreover, there hold:
(a) if Ry0 > 1 and z ∈ Sy then ω(z) ⊂ ∂Sx ∩ Sy and limt→∞ ‖Φt(z)− E2‖X = 0;
(b) if Ry0 ≤ 1 then limt→∞ ‖Φt(z)− E0‖X = 0.

6. Let z ∈ ∂Sy, then ‖Φyt (z)‖L1(0,∞) ≤ e−µ0t‖Φy0(z)‖L1(0,∞) for every t ≥ 0. Moreover, there hold:
(a) if Rx0 > 1 and z ∈ Sx then ω(z) ⊂ Sx ∩ ∂Sy and limt→∞ ‖Φt(z)− E1‖X = 0;
(b) if Rx0 ≤ 1 then limt→∞ ‖Φt(z)− E0‖X = 0.

7. Let z ∈ X+:
(a) if Rx0 ≤ 1, then ω(z) ⊂ ∂Sx and limt→∞ ‖Φxt (z)‖L1(0,∞) = 0;
(b) if Ry0 ≤ 1, then ω(z) ⊂ ∂Sy and limt→∞ ‖Φyt (z)‖L1(0,∞) = 0;

8. Let z ∈ Sx ∩ Sy:
(a) if max{Rx0 , R

y
0} > 1, then ω(z) ⊂ Sx ∪ Sy;

(b) if Rx0 > max{1, Ry0}, then ω(z) ⊂ Sx;
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(c) if Ry0 > max{1, Rx0}, then ω(z) ⊂ Sy.

Proof.

1. Let z ∈ ∂Sx. We remind that the component in x of the semiflow rewrites as Φxt (z)(a) = Φx,1t (z)(a) +
Φx,2t (z)(a), where Φx,1t (z) and Φx,2t (z) are respectively defined in (2.4) and (2.5). We see that

∫ βx

0

Φx,1t (z)(a)da ≤
∫ βx

0

x0(a)da = 0

for every t ≥ 0, which implies

∫ ∞
0

βx(a)φx,1t (z)(a)da =

∫ βx

0

βx(a)Φx,1t (z)(a)da ≤ ‖βx‖L∞
∫ βx

0

Φx,1t (z)(a)da = 0

for every t ≥ 0. Hence we deduce that the function F (t) =
∫∞

0
βx(a)Φxt (z)(a)da satisfies

F (t) ≤ ‖βx‖L∞
∫ t

0

F (t− s)ΦSt−a(z)da.

Then a Gronwall argument states that F (t) = 0 for every t ≥ 0 and we deduce from (2.5) that Φx,2t (z)(a) = 0
for every t ≥ 0 and every a ≥ 0. Consequently we get

∫ βx

0

Φxt (z)(a)da =

∫ βx

0

Φx,1t (z)(a)da+

∫ βx

0

Φx,2t (z)(a)da = 0

for every t ≥ 0, thus ∂Sx is positively invariant. Moreover, we can deduce that

∫ ∞
0

Φxt (z)(a)da =

∫ βx

0

Φx,1t (z)(a)da ≤ e−µ0t‖x0‖L1(R+)

for every t ≥ 0 by using (2.4) and Assumption 1.1. Similar arguments would prove on one hand that ∂Sy is
positively invariant, and on the other hand that (4.1) holds for every z := (x0, y0, z0) ∈ ∂Sy and every t ≥ 0
by using (2.7) and Assumption 1.1.

2. Let z := (x0, y0, z0) ∈ ∂Sx ∩ ∂Sy. Using the first point, we have∫ ∞
0

βx(a)Φxt (z)(a)da = 0,

∫ ∞
0

βy(a)Φyt (z)(a)da = 0

for every t ≥ 0. Consequently, from problem (1.1) we get

ΦSt (z) = S0e
−µSt +

Λ

µS
(1− e−µSt)

for every t ≥ 0. Using (4.1), we deduce

‖Φt(z)− E0‖X ≤ e−µ0t
(
|S0 − S∗0 |+ ‖x0‖L1(R+) + ‖y0‖L1(R+)

)
= e−µ0t ‖z − E0‖X

which proves the second point.
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3. Let z ∈ X+ and let (S, x, y) ∈ C(R+,X+) the solution of (1.1). By Theorem 2.2, we know that there exists
k > 0 (independent of z) such that

lim sup
t→∞

∫ ∞
0

βx(a)x(t, a)da ≤ k, lim sup
t→∞

∫ ∞
0

βy(a)y(t, a)da ≤ k.

Injecting the latter equation into (1.1) implies that for every ε > 0, there exists t0 > 0 such that

S′(t) ≥ Λ− µSS(t)− 2S(t)(k + ε)

for every t ≥ t0, whence

lim inf
t→∞

S(t) ≥ Λ

µS + 2(k + ε)
> 0

whence the third point.
4. Let z ∈ Sx, then there exists 0 ≤ b1 < b2 ≤ βx such that∫ b2

b1

x0(a)da > 0.

By Assumption 1.1, we may find c ∈ (βx,∞) such that βx(a) > 0 a.e. a ∈ [βx, c). Let t0 = c− b2, then using
(2.4), we see that ∫ c

βx

Φxt0(z)(a)da ≥ e−t0‖µx‖L∞
∫ c

βx

x0(a− t)χ[t,∞)(a)da

≥ e−t0‖µx‖L∞
∫ b2

b1

x0(a)da > 0

Since βx > 0 a.e. on [βx, c] and ΦSt (z) > 0 for every t > 0 due to Theorem 2.2, then we get

Φxt0(z)(0) > 0

by using (2.5). By continuity arguments, there exists t1 > t0 such that

Φxt (z)(0) > 0, ∀t ∈ [t0, t1).

Let ∆t = t1 − t0 > 0 and let 0 < ε << c− βx, then we see that∫ c

βx

Φxt0+s(z)(a)da ≥ e−s‖µx‖L∞
∫ c

βx

Φxt0+s−a(z)(0)χ[0,t0+s](a)da > 0

for any s ∈ [βx + ε, t1 − t0 + c− ε). Consequently we have

Φxt (z)(0) > 0, ∀t ∈ [t0 + βx + ε, t1 + c− ε].

Similarly we can prove that

Φxt (z)(0) > 0, ∀t ∈
[
t0 + n

(
βx + ε

)
, t1 + n (c− ε)

]
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for any n ∈ N. Since n(c− βx − 2ε) −−−−→
n→∞

∞, we deduce that there exists t∗ > 0 such that

Φxt (z)(0) > 0, ∀t ∈ [t∗, t∗ + c].

Let 0 < ε < c and t = t∗ + c+ ε, then we get

Φxt (z)(0) ≥ ΦSt (z)

∫ c−ε

βx

βx(a)Φxt−a(z)(0)da > 0.

Hence we deduce that

Φxt (z)(0) > 0, ∀t ∈ [t∗, t∗ + 2c]

then repeating this argument we obtain∫ ∞
0

βx(a)Φxt (z)(a)da = Φxt (z)(0) > 0, ∀t ≥ t∗.

Finally, we obtain

∫ βx

0

Φxt (z)(a)da ≥ e−βx‖µx‖L∞
∫ βx

0

Φxt−a(z)(0)da > 0

for every t > t∗, so that Sx is asymptotically positively invariant. The same arguments would prove the result
for y.

5. Let z := (S0, x0, y0) ∈ ∂Sx and (S, x, y) ∈ C(R+,X+) be the solution of (1.1). Since ∂Sx is positively invariant
by the first point, then ω(z) ⊂ ∂Sx. Consequently we have

∫ ∞
0

βx(a)x(t, a)da = 0

for every t ≥ 0 and from (2.4)–(2.5) we get

‖Φxt (z)‖L1(0,∞) ≤ ‖x0‖L1(0,∞)e
−µ0t −−−→

t→∞
0.

We deduce that (S, y) satisfies (1.2). If Ry0 > 1 and z ∈ Sy, then from Proposition 1.2 we obtain

lim
t→∞

‖Φt(z)− E2‖X ≤ lim
t→∞

(∥∥(ΦSt (z),Φyt (z))− (S∗2 , y
∗
2)
∥∥
R×L1(0,∞)

+ ‖Φxt (z)‖L1(0,∞)

)
= 0

whence ω(z) ⊂ Sy. If Ry0 ≤ 1, we deduce from Proposition 1.2 that

lim
t→∞

‖Φt(z)− E0‖X ≤ lim
t→∞

(∥∥(ΦSt (z),Φyt )− (S∗0 , 0)
∥∥
R×L1(0,∞)

+ ‖Φxt (z)‖L1(0,∞)

)
= 0.

6. The latter arguments would prove the case z ∈ ∂Sy.
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7. Let z ∈ X+: (a) Suppose that Rx0 ≤ 1. A simple upper bound on (1.1) leads to


S′(t) ≤ Λ− µSS(t)− S(t)

∫∞
0
βx(a)x(t, a)da,

∂x(t, a)

∂t
+
∂x(t, a)

∂a
= −µx(a)x(t, a),

x(t, 0) = S(t)
∫∞

0
βx(a)x(t, a)da.

since Φyt (z)(a) ≥ 0 a.e. a ≥ 0. From Proposition 1.2, we obtain

lim
t→∞

‖Φxt (z)‖L1(R+) = 0

since Rx0 ≤ 1, whence ω(z) ⊂ ∂Sx.
(b) The same argument proves the result when Ry0 ≤ 1.

8. Let z ∈ Sx ∩Sy: (a) Suppose that max{Rx0 , R
y
0} > 1. Without loss of generality, we can suppose that Ry0 > 1.

By continuity arguments, there exists βy < c <∞ such that

Λ
∫ c

0
βy(a)πy(a)da

µS
> 1

and there exists ε > 0 small enough such that

Λ
∫ c

0
βy(a)πy(a)da

µS + ε(‖βx‖L∞ + ‖βy‖L∞)
> 1. (4.2)

Let Mε := {z ∈ Sx ∩ Sy, ‖z − E0‖X ≤ ε}. We first prove that for every z ∈Mε, there exists t(z) such that

‖Φt(z)− E0‖X > ε (4.3)

holds. By contradiction, suppose that there exists z := (S0, x0, y0) ∈ Sx ∩ Sy such that

‖Φt(z)− E0‖X ≤ ε, ∀t ≥ 0. (4.4)

We know by Proposition 4.4 4 that there exists τ ≥ 0 such that Φt(z) ∈ Sx ∩ Sy for every t ≥ τ . Thus, a
Gronwall argument leads to

S(t) ≥ Λ

µS + ε (‖βy‖L∞ + ‖βx‖L∞)
, ∀t ≥ 0.

Now, we denote for convenience y(t, a) = Φyt (z)(a), and we deduce from (1.1) that y satisfies the following
system:


∂y(t, a)

∂t
+
∂y(t, a)

∂a
= −µy(a)y(t, a),

y(t, 0) ≥ Λ

µS + ε (‖βx‖L∞ + ‖βy‖L∞)

∫ c

0

βy(a)y(t, a)da,

y(τ, a) = Φyτ (z)(a)
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for a.e. a ∈ [0, c] and every t ≥ τ . We then have y(t, a) ≥ ŷ(t, a) where ŷ is the solution of the latter system,
with an equality instead. We see that Φyτ (z) ∈ Sy by Proposition 4.4 4 so that the function

(0, c) 3 a 7−→ Φyτ (z)(a)

belongs to L1
+(0, c) \ {0} since c > βy. Since (4.2) holds, we deduce from Lemma 4.3 that

lim
t→∞

∫ c

0

y(t, a)da ≥ lim
t→∞

∫ c

0

ŷ(t, a)da =∞

which contradicts (4.4), whence (4.3) is proved. Therefore we obtain

{z ∈ Sx ∩ Sy, lim
t→∞

Φt(z) = E0} = ∅. (4.5)

Now, consider z ∈ Sx ∩ Sy, and suppose by contradiction that there exists w ∈ ω(z) ∩ ∂Sx ∩ ∂Sy. The
invariance of ω(z) (due to Lem. 4.2) then gives ω(w) = ω(z) and so

d(ω(z), E0) ≤ d(ω(w),Φt(w)) + d(Φt(w), E0), ∀t ≥ 0.

A consequence of Lemma 4.2 and Proposition 4.4 2, is that d(ω(z), E0) = 0 and so {E0} ⊂ ω(z) which
contradicts (4.5), whence ω(z) ⊂ Sx ∪ Sy for any z ∈ Sx ∩ Sy.
(b) Suppose that Rx0 > max{1, Ry0}. First suppose that Ry0 ≤ 1, then using Proposition 4.4 8(a) and 7(b), we
deduce that ω(z) ⊂ (Sx ∪ Sy)∩ ∂Sy = Sx ∩ ∂Sy ⊂ Sx. Now suppose that Rx0 > Ry0 > 1. We see that rx > ry,
so we can consider ε > 0 small enough such that rx(1/ry − ε) > 1. We then define the set

Mε := {(S0, x0, y0) ∈ Sx ∩ Sy, ‖x0‖L1(R+) ≤ ε}

and we aim to prove that for every z ∈Mε, there exists t(z) such that

‖Φxt (z)‖L1(R+) > ε. (4.6)

By contradiction, suppose that there exists z := (S0, x0, y0) such that

‖Φxt (z)‖L1(R+) ≤ ε, ∀t ≥ 0. (4.7)

Denoting (ΦSt (z),Φxt (z),Φyt (z)) = (S, x, y) for notational simplicity, we deduce from (1.1) that S satisfies the
following inequalities

S′(t) ≤ Λ− µSS(t)− S(t)

∫ ∞
0

βy(a)y(t, a)da

and

S′(t) ≥ Λ− (µS + ε‖βx‖L∞)S(t)− S(t)

∫ ∞
0

βy(a)y(t, a)da.
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Consider the following models
S′(t) = Λ− µSS(t)− S(t)

∫∞
0
βx(a)x(t, a)da,

∂y(t, a)

∂t
+
∂y(t, a)

∂a
= −µy(a)y(t, a),

y(t, 0) = S(t)
∫∞

0
βy(a)y(t, a)da

and 
S′(t) = Λ− (µS + ε‖βx‖L∞)S(t)− S(t)

∫∞
0
βx(a)x(t, a)da,

∂y(t, a)

∂t
+
∂y(t, a)

∂a
= −µy(a)y(t, a),

y(t, 0) = S(t)
∫∞

0
βy(a)y(t, a)da

then using Proposition 1.2, we deduce that

S(t) −−−→
t→∞

1

ry

where ry is defined in Section 1. Consequently, there exists t̃ ≥ 0 such that for every t ≥ t̃, we have

S(t) ≥ 1

ry
− ε.

By definition of ε and by continuity arguments, there exists βx < c <∞ such that(
1

ry
− ε
)∫ c

0

βx(a)πx(a)da > 1. (4.8)

From (1.1), we deduce that x satisfies:


∂x(t, a)

∂t
+
∂x(t, a)

∂a
= −µx(a)x(t, a),

x(t, 0) ≥
(

1

ry
− ε
)∫ c

0

βy(a)y(t, a)da,

x(t̃, a) = Φx
t̃
(z)

for every a ∈ [0, c] and every t ≥ t̃. We then have x(t, a) ≥ x̂(t, a) where x̂ is the solution of the latter system,
with an equality instead of the inequality, for every t ≥ τ and a.e. a ∈ [0, c]. We see that the function

(0, c) 3 a 7−→ Φxt̃ (z)(a)

belongs to L1
+(0, c) \ {0} since Φt̃(z) ∈ Sx from Proposition 4.4 4. Since (4.8) holds, we deduce by Lemma 4.3

that

lim
t→∞

∫ c

0

x(t, a)da ≥ lim
t→∞

∫ c

0

x̂(t, a)da =∞
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which contradicts (4.7), hence (4.6) holds. We deduce that{
z ∈ Sx ∩ Sy : lim

t→∞
‖Φxt (z)‖L1(R+) = 0

}
= ∅. (4.9)

Let z ∈ Sx ∩ Sy and suppose that there exists w ∈ ω(z) ∩ ∂Sx, then

d(ω(z), E2) ≤ d(ω(w),Φt(w)) + d(Φt(w), E2) = 0

by Lemma 4.2 and Proposition 4.4 5(a), whence {E2} ⊂ ω(z) which contradicts (4.9). Consequently we have
ω(z) ⊂ Sx for any z ∈ Sx ∩ Sy.
(c) The latter argument proves that whenever Ry0 > max{1, Rx0}, then ω(z) ⊂ Sy for any z ∈ Sx ∩ Sy.

Remark 4.5. We can note that to prove the item 4 of the latter proposition, we may not need to assume the
item 2 of Assumption 1.1: namely the existence of βx and βy. Indeed, we can make use of irreducible operators

to prove the statement, as in ([31], Lem. 5.1). However we still make the assumption, since the sketch of proof
would be tedious and not add much to the result.

5. Global analysis

In this section, we aim to prove that the equilibria defined in Section 1, satisfy a global stability property.
To this end, we use Lyapunov functionals.

5.1. Lyapunov functionals

We define

L0 : z 7−→ S∗0g

(
S

S∗0

)
+

∫ ∞
0

Ψx(a)x(a)da+

∫ ∞
0

Ψy(a)y(a)da

Lx : z 7−→ S∗1g

(
S

S∗1

)
+

∫ ∞
0

Ψx(a)x∗1(a)g

(
x(a)

x∗1(a)

)
da+

∫ ∞
0

Ψy(a)y(a)da;

Ly : z 7−→ S∗2g

(
S

S∗2

)
+

∫ ∞
0

Ψx(a)x(a)da+

∫ ∞
0

Ψy(a)y∗2(a)g

(
y(a)

y∗2(a)

)
da

for any z = (S, x, y) ∈ X , where Ψx ∈ L∞+ (0,∞) and Ψy ∈ L∞+ (0,∞) are defined by

Ψx(a) =
1

rx

∫ ∞
a

βx(s)e−
∫ s
a
µx(ξ)dξds, Ψy(a) =

1

ry

∫ ∞
a

βy(s)e−
∫ s
a
µy(ξ)dξds

for every a ≥ 0, and we remind that the other parameters are defined in Section 1. We first start with a
well-posedness result:

Proposition 5.1.

1. The function (t, z) 7→ L0(Φt(z)) is well-defined on R× (R∗ × L1
+(0,∞)× L1

+(0,∞));
2. for every z ∈ Sx, the function (t, v) 7→ Lx(Φt(v)) is well-defined on R+×ω(z) whenever Rx0 > max{1, Ry0};
3. for every z ∈ Sy, the function (t, v) 7→ Ly(Φt(v)) is well-defined on R+×ω(z) whenever Ry0 > max{1, Rx0};
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4. let z ∈ Sx ∩ Sy and suppose that Rx0 = Ry0 > 1. If ω(z) ⊂ Sx, then the function (t, v) 7→ Lx(Φt(v)) is
well-defined on R+×ω(z), if ω(z) ⊂ Sy, then the function (t, v) 7→ Ly(Φt(v)) is well-defined on R+×ω(z).

Proof.

1. By Theorem 2.2, we know that the semiflow Φt is positive, and that ΦSt > 0 for every t > 0, so it proves the
first point.

2. Suppose that Rx0 > max{1, Ry0} and let z ∈ Sx. Either z ∈ ∂Sy, so from Proposition 4.4 6(a), we deduce that
ω(z) ⊂ Sx ∩ ∂Sy, or z ∈ Sy and we deduce from Proposition 4.4 8(b) that ω(z) ⊂ Sx. Moreover, Proposition
4.4 3 ensures us that

S∗1g

(
ΦSt (v)

S∗1

)
is well-defined for every t ≥ 0 and every v ∈ ω(z). We now prove that there exists a positive constant c(z) > 0,
such that

0 ≤ x∗1(a)g

(
Φxt (v)(a)

x∗1(a)

)
≤ c(z)Φxt (v)(a) (5.1)

for every a ≥ 0, t ≥ 0 and v ∈ ω(z). Following ([39], Prop. 2), we note that the definition of the function g
(in (1.3)), implies that the following inequality holds:

ln(r) ≤ r − 1, ∀r > 0.

Let t ≥ 0 and v ∈ ω(z), then we deduce that the middle term of (5.1) is given by

x∗1(a)g

(
Φxt (v)(a)

x∗1(a)

)
= x∗1(a)

(
Φxt (v)(a)

x∗1(a)
+ ln

(
x∗1(a)

Φxt (v)(a)

)
− 1

)
≤ x∗1(a)

(
Φxt (v)(a)

x∗1(a)
+

x∗1(a)

Φxt (v)(a)
− 2

)
= Φxt (v)(a)

(
x∗1(a)

Φxt (v)(a)
− 1

)2

.

Thus, to prove (5.1), it suffices to prove that there exists a constant c(z), such that

(
x∗1(a)

Φxt (v)(a)
− 1

)2

≤ c(z), ∀a ≥ 0. (5.2)

for every t ≥ 0 and every v ∈ ω(z). From Proposition 4.4 4, we know that there exists τ ≥ 0 such that∫ ∞
0

βx(a)Φxt (v)(a)da > 0

for every t ≥ τ and every v ∈ ω(z). Let v = (vS , vx, vy) ∈ ω(z). The invariance of ω(z) under the semiflow
implies that for every t ≥ τ , there exists u ∈ ω(z) such that

v = Φt(u).
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We deduce that ∫ ∞
0

βx(a)vx(a)da =

∫ ∞
0

βx(a)Φxt (u)(a)da > 0.

Since ω(z) is compact (by Lem. 4.2), then a continuity argument ensures us with the existence of a constant
c(z) (independent of v) such that ∫ ∞

0

βx(a)vx(a)da ≥ c(z)

for any v ∈ ω(z). Since Φt(ω(z)) ⊂ ω(z) for all t ≥ 0, then we get∫ ∞
0

βx(a)Φxt (v)(a)da ≥ c(z), ∀t ≥ 0, ∀v ∈ ω(z). (5.3)

Suppose that (t, a) ∈ (R+)2 such that t > a. From (2.5), (5.3) and Proposition 4.4 3, we know that there
exist two constants δ > 0 and c(z) > 0 such that

Φxt (v)(a) ≥ δc(z)πx(a)

for every v ∈ ω(z). By definition of x∗1 (see Sect. 1), we see that

Φxt (v)(a)

x∗1(a)
≥ δc(z)rx
µS(Rx0 − 1)

=: k(z) > 0 (5.4)

for every v ∈ ω(z), and consequently

(
x∗1(a)

Φxt (v)(a)
− 1

)2

≤ 1

k(z)2
+ 1 +

2

k(z)
<∞

which proves (5.2) for any v ∈ ω(z) and every (t, a) ∈ (R+)2 such that t > a. Now, suppose that a ≥ t. Since
ω(z) ⊂ Sx is invariant under the semiflow, then using ([42], p. 26), we deduce that for any v ∈ ω(z), there
exists a full orbit ξ 7−→ uv(ξ), for every ξ ∈ R, passing through v, i.e. satisfying: uv(ξ) ∈ ω(z), ∀ξ ∈ R,

uv(0) = v,
Φξ(uv(s)) = uv(ξ + s), ∀(ξ, s) ∈ R+ × R.

It then suffices to consider s ∈ R, such that t+ s > a. Since uv(−s) ∈ ω(z), we deduce from (5.4) that

x∗1(a)

Φxt (v)(a)
=

x∗1(a)

Φxt (uv(0))(a)
=

x∗1(a)

Φxt+s(uv(−s))(a)
≤ 1

k(z)

which proves (5.2) for any v ∈ ω(z) and every (t, a) ∈ (R+)2 such that a ≥ t. We have then proved that (5.2)
(and consequently (5.1)) holds for every (t, a, v) ∈ R+ × R+ × ω(z). Finally, the integrability on R+ of the
functions

a 7−→ Ψx(a)Φxt (u)(a), ∀(t, u) ∈ R+ × ω(z)
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and

a 7−→ Ψy(a)Φyt (u)(a), ∀(t, u) ∈ R+ × ω(z)

imply (by using (5.1)) that (t, v) 7−→ Lx(Φt(v)) is well-defined on R+ × ω(z) for every z ∈ Sx.
3. Suppose that Ry0 > max{1, Rx0} and let z ∈ Sy. Either z ∈ ∂Sx, so we see that ω(z) ⊂ ∂Sx ∩ Sy by using

Proposition 4.4 5(a), or z ∈ Sx and we deduce from Proposition 4.4 8(c) that ω(z) ⊂ Sy. Using Proposition
4.4 3, we see that

S∗2g

(
ΦSt (v)

S∗2

)
is well-defined for every t ≥ 0 and every v ∈ ω(z). Similar computations as for proving (5.1) imply that there
exists a positive constant c(z) > 0 such that

0 ≤ y∗2(a)g

(
Φyt (v)(a)

y∗2(a)

)
≤ c(z)Φyt (v)(a)

for every a ≥ 0, t ≥ 0 and v ∈ ω(z). Finally we prove as above that the function (t, v) 7−→ Ly(Φt(v)) is
well-defined on R+ × ω(z) for every z ∈ Sy.

4. Suppose now that Rx0 = Ry0 > 1. From Proposition 4.4 8(a), we know that ω(z) ⊂ Sx ∪ Sy. Consequently,
either ω(z) ⊂ Sx and we use the first point, to prove that the function (t, v) 7−→ Lx(Φt(v)) is well-defined
on R+ × ω(z), or ω(z) ⊂ Sy and we use the second point, to prove that the function (t, v) 7−→ Ly(Φt(v)) is
well-defined on R+ × ω(z).

We remind the following definition:

Definition 5.2. Let S ⊂ X . A function L : X → R is called a Lyapunov function if there hold that:

– L is continuous on S (the closure of S in X );
– the function R+ 3 t 7−→ L(Φt(z)) is non-increasing for every z ∈ S.

We now show that L0, Lx and Ly are Lyapunov functionals.

Proposition 5.3. The following hold:

1. if max{Rx0 , R
y
0} ≤ 1, then L0 is a Lyapunov function on R∗ × L1

+(0,∞)× L1
+(0,∞). Moreover, if Rx0 ≤ 1

(resp. Ry0 ≤ 1), then L0 is a Lyapunov function on (R∗ × L1
+(0,∞) × L1

+(0,∞)) ∩ ∂Sy (resp. on (R∗ ×
L1

+(0,∞)× L1
+(0,∞)) ∩ ∂Sx);

2. if Rx0 > max{1, Ry0} then Lx is a Lyapunov function on ω(z) for every z ∈ Sx;
3. if Ry0 > max{1, Rx0} then Ly is a Lyapunov function on ω(z) for every z ∈ Sy;
4. if Rx0 = Ry0 > 1, then Lx is a Lyapunov function on ω(z) for every z ∈ Sx ∩ Sy such that ω(z) ⊂ Sx.

Moreover, Ly is a Lyapunov function on ω(z) for every z ∈ Sx ∩ Sy such that ω(z) ⊂ Sy.

Proof.

1. (a) Suppose that max{Rx0 , R
y
0} ≤ 1 and let z ∈ R∗ × L1

+(0,∞)× L1
+(0,∞). By Proposition 5.1 1, we know

that L0(Φt(z)) is well-defined for every t ≥ 0 and L0 is continuous. We denote by (S, x, y) the solution of
(1.1). We now proceed in the differentiation of L0 w.r.t. t along (1.1). First, we see that

∂L0((Φt(v)))

∂t
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=

(
1− S∗0

S(t)

)
S′(t) +

∫ ∞
0

Ψx(a)
∂x(t, a)

∂t
da+

∫ ∞
0

Ψy(a)
∂y(t, a)

∂t
da

=− (Λ− µSS(t))2

µSS(t)
−
(

1− S∗0
S(t)

)(
S(t)

∫ ∞
0

βx(a)x(t, a)da+ S(t)

∫ ∞
0

βy(a)y(t, a)da

)
−
∫ ∞

0

Ψx(a)

(
∂x(t, a)

∂a
+ µx(a)x(t, a)

)
da−

∫ ∞
0

Ψy(a)

(
∂y(t, a)

∂a
+ µy(a)y(t, a)

)
.

We note that

Ψx(0) = Ψy(0) = 1, Ψx(∞) = Ψy(∞) = 0, Ψ′x = µxΨx −
βx
rx
, Ψ′y = µyΨy −

βy
ry

(5.5)

so after integrations by parts, we get∫ ∞
0

Ψx(a)

(
∂x(t, a)

∂a
+ µx(a)x(t, a)

)
da = S(t)

∫ ∞
0

βx(a)x(t, a)da− 1

rx

∫ ∞
0

βx(a)x(t, a)da

and ∫ ∞
0

Ψy(a)

(
∂y(t, a)

∂a
+ µy(a)y(t, a)

)
da = S(t)

∫ ∞
0

βy(a)y(t, a)da− 1

ry

∫ ∞
0

βy(a)y(t, a)da. (5.6)

Consequently, we obtain:

∂L0((Φt(v)))

∂t
= − (Λ− µSS(t))2

µSS(t)
+

(
Rx0 − 1

rx

)∫ ∞
0

βx(a)x(t, a)da+

(
Ry0 − 1

rx

)∫ ∞
0

βy(a)y(t, a)da ≤ 0

(5.7)
for any t ≥ 0. Consequently, L0 is a Lyapunov function on R∗ × L1

+(0,∞) × L1
+(0,∞) whenever

max{Rx0 , R
y
0} ≤ 1.

(b) Suppose that Rx0 ≤ 1 and let z ∈ (R∗ ×L1
+(0,∞)×L1

+(0,∞)) ∩ ∂Sy. Then L0(Φt(z)) is well-defined for
every t ≥ 0, from Proposition 5.1 1, and is continuous. Since ∂Sy is positively invariant by Proposition 4.4
1, it follows that ∫ ∞

0

βy(a)y(t, a)da = 0

for any t ≥ 0. Consequently, we deduce from (5.7) that

∂L0((Φt(v)))

∂t
= − (Λ− µSS(t))2

µSS(t)
+

(
Rx0 − 1

rx

)∫ ∞
0

βx(a)x(t, a)da ≤ 0

for any t ≥ 0, whence L0 is a Lyapunov function on (R∗ × L1
+(0,∞)× L1

+(0,∞)) ∩ ∂Sy whenever Rx0 ≤ 1.
(c) In the case Ry0 ≤ 1, from (5.7) and the fact that ∂Sx is positively invariant by Proposition 4.4 1, we
deduce that

∂L0((Φt(v)))

∂t
= − (Λ− µSS(t))2

µSS(t)
+

(
Ry0 − 1

ry

)∫ ∞
0

βy(a)y(t, a)da ≤ 0

for any t ≥ 0 and every z ∈ (R∗ × L1
+(0,∞)× L1

+(0,∞)) ∩ ∂Sx, so L0 is a Lyapunov function.
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2. Suppose that Rx0 > max{1, Ry0} and let z ∈ Sx. Then Lx is well-defined on ω(z) from Proposition 5.1 1, and
is clearly continuous. Let v ∈ ω(z), then

∂(Lx(Φt(v)))

∂t

=

(
1− S∗1

S(t)

)
S′(t) +

∫ ∞
0

Ψx(a)

(
1− x∗1(a)

x(t, a)

)
∂x(t, a)

∂t
da+

∫ ∞
0

Ψy(t, a)
∂y(t, a)

∂t
da.

Now, we compute each term. The fact that

Λ = µSS
∗
1 + S∗1

∫ ∞
0

βx(a)x∗1(a)da

leads to (
1− S∗1

S(t)

)
S′(t)

=− µS
S(t)

(S(t)− S∗1 )2 +

(
1− S∗1

S(t)

)(
S∗1

∫ ∞
0

βx(a)x∗1(a)da− S(t)

∫ ∞
0

βx(a)x(t, a)da

− S(t)

∫ ∞
0

βy(a)y(t, a)da

)
. (5.8)

Now, we compute the second term:∫ ∞
0

Ψx(a)

(
1− x∗1(a)

x(t, a)

)
∂x(t, a)

∂t
da = −

∫ ∞
0

Ψx(a)

(
1− x∗1(a)

x(t, a)

)(
∂x(t, a)

∂a
+ µx(a)x(t, a)

)
da.

We remark that (
1− x∗1

x

)(
∂x

∂a
+ µxx

)
= x∗1

d

da
g

(
x

x∗1

)
since (x∗1)′ = −µxx∗1. Thus, after an integration by parts we obtain:∫ ∞

0

Ψx(a)

(
1− x∗1(a)

x(t, a)

)
∂x(t, a)

∂t
da = Ψx(0)x∗1(0)g

(
x(t, 0)

x∗1(0)

)
+

∫ ∞
0

(Ψxx
∗
1)′(a)g

(
x(t, a)

x∗1(a)

)
da.

since Ψx(∞) = 0. Using (5.5) and the fact that x∗1(0) = S∗1
∫∞

0
βx(a)x∗1(a)da imply that∫ ∞

0

Ψx(a)

(
1− x∗1(a)

x(t, a)

)
∂x(t, a)

∂t
da

=S∗1g

(
S(t)

∫∞
0
βx(a)x(t, a)da

S∗1
∫∞

0
βx(a)x∗1(a)da

)∫ ∞
0

βx(a)x∗1(a)da− S∗1
∫ ∞

0

βx(a)x∗1(a)g

(
x(t, a)

x∗1(a)

)
da

=S(t)

∫ ∞
0

βx(a)x(t, a)da− S∗1 ln

(
S(t)

∫∞
0
βx(a)x(t, a)da

S∗1
∫∞

0
βx(a)x∗1(a)da

)∫ ∞
0

βx(a)x∗1(a)da

− S∗1
∫ ∞

0

βx(a)x∗1(a)da− S∗1
∫ ∞

0

βx(a)

(
x(t, a)− x∗1(t, a) ln

(
x(t, a)

x∗1(a)

)
− x∗1(a)

)
da (5.9)
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since S∗1 = 1/rx. After an integration by parts, we see that the third term reads as∫ ∞
0

Ψy(a)
∂y(t, a)

∂t
da = S(t)

∫ ∞
0

βy(a)y(t, a)da− 1

ry

∫ ∞
0

βy(a)y(t, a)da. (5.10)

by using (5.6). Now, adding (5.8) and (5.9), we see that:(
1− S∗1

S(t)

)
S′(t) +

∫ ∞
0

Ψx(a)

(
1− x∗1(a)

x(t, a)

)
∂x(t, a)

∂t
da

=− µS
S(t)

(S(t)− S∗1 )2 − S∗1
2

S(t)

∫ ∞
0

βx(a)x∗1(a)da+ S∗1

∫ ∞
0

βx(a)x∗1(t, a)

(
ln

(
x(t, a)

x∗1(a)

)
+ 1

)
da

− S∗1 ln

(
S
∫∞

0
βx(a)x(t, a)da

S∗1
∫∞

0
βx(a)x∗1(a)da

)∫ ∞
0

βx(a)x∗1(a)da−
(

1− S∗1
S(t)

)
S(t)

∫ ∞
0

βy(a)y(t, a)da

=− S∗1
∫ ∞

0

βx(a)x∗1(a)

[(
S∗1
S(t)

− ln

(
S∗1
S(t)

)
− 1

)
− ln

(
x(t, a)

∫∞
0
βx(s)x∗1(s)ds

x∗1(a)
∫∞

0
βx(s)x(t, s)ds

)]
da

−
(

1− S∗1
S(t)

)
S(t)

∫ ∞
0

βy(a)y(t, a)da− µS
S

(S − S∗1)2.

We remark that ∫ ∞
0

βx(a)x∗1(a) ln

(
x(t, a)

∫∞
0
βx(s)x∗1(s)ds

x∗1(a)
∫∞

0
βx(s)x(t, s)ds

)
da

=−
∫ ∞

0

βx(a)x∗1(a)g

(
x(t, a)

∫∞
0
βx(s)x∗1(s)ds

x∗1(a)
∫∞

0
βx(s)x(t, s)ds

)

and we deduce that(
1− S∗1

S

)
S′(t) +

∫ ∞
0

Ψx(a)

(
1− x∗1(a)

x(t, a)

)
∂x(t, a)da

∂t

=− µS
S

(S − S∗1 )2 − S∗1
∫ ∞

0

βx(a)x∗1(a)

[
g

(
S∗1
S(t)

)
+ g

(
x(t, a)

∫∞
0
βx(s)x∗1(s)ds

x∗1(a)
∫∞

0
βx(s)x(t, s)ds

)]
da

−
(

1− S∗1
S(t)

)
S(t)

∫ ∞
0

βy(a)y(t, a)da. (5.11)

Now, adding (5.10) and (5.11), and recalling that S∗1 = 1/rx, we obtain:

∂

∂t
(Lx(Φt(z)))

=− µS
S

(S − S∗1 )2 − S∗1
∫ ∞

0

βx(a)x∗1(a)

[
g

(
S∗1
S(t)

)
+ g

(
x(t, a)

∫∞
0
βx(s)x∗1(s)ds

x∗1(a)
∫∞

0
βx(s)x(t, s)ds

)]
da

−
(

1− S∗1
S(t)

)
S(t)

∫ ∞
0

βy(a)y(t, a)da+ S

∫ ∞
0

βy(a)y(t, a)da− 1

ry

∫ ∞
0

βy(a)y(t, a)da

=− µS
S

(S − S∗1 )2 − S∗1
∫ ∞

0

βx(a)x∗1(a)

[
g

(
S∗1
S(t)

)
+ g

(
x(t, a)

∫∞
0
βx(s)x∗1(s)ds

x∗1(a)
∫∞

0
βx(s)x(t, s)ds

)]
da
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−
∫ ∞

0

βy(a)y(t, a)

[
1

ry
− 1

rx

]
da ≤ 0 (5.12)

for any t ≥ 0 since g is a non-negative function and the fact that

Rx0 > Ry0 ⇐⇒
1

rx
<

1

ry
.

Consequently Lx is a Lyapunov function on ω(z) for every z ∈ Sx when Rx0 > max{1, Ry0}.
3. Suppose that Ry0 > max{1, Rx0} and let z ∈ Sy. Then Ly is well-defined on ω(z) from Proposition 5.1 2, and

is clearly continuous. Let v ∈ ω(z). After similar computations as above, a differentiation of Ly w.r.t. t along
(1.1) gives:

∂

∂t
(Ly(Φt(z)))

=− µS
S

(S − S∗2 )2 − S∗2
∫ ∞

0

βy(a)y∗2(a)

[
g

(
S∗2
S(t)

)
+ g

(
x(t, a)

∫∞
0
βy(s)y∗2(s)ds

y∗2(a)
∫∞

0
βy(s)y(t, s)ds

)]
da

−
∫ ∞

0

βx(a)x(t, a)

[
1

rx
− 1

ry

]
da ≤ 0 (5.13)

for any t ≥ 0. We deduce that Ly is a Lyapunov function on ω(z) for every z ∈ Sy whenever Ry0 > max{1, Rx0}.
4. Now, suppose that Rx0 = Ry0 > 1 and let z ∈ Sx ∩ Sy. We know by Proposition 4.4 8(a) that ω(z) ⊂ Sx ∪ Sy.

If ω(z) ⊂ Sx, then using Proposition 5.1 3, we know that the function Lx is well-defined on ω(z) and is
continuous. Let v ∈ ω(z). From (5.12) we see that

∂

∂t
(Lx(Φt(z)))

=− µS
S(t)

(S(t)− S∗1 )2 − S∗1
∫ ∞

0

βx(a)x∗1(a)

[
g

(
S∗1
S(t)

)
+ g

(
x(t, a)

∫∞
0
βx(s)x∗1(s)ds

x∗1(a)
∫∞

0
βx(s)x(t, s)ds

)]
da ≤ 0 (5.14)

for any t ≥ 0 since Rx0 = Ry0 ⇐⇒ rx = ry. Thus Lx is a Lyapunov function on ω(z) for every z ∈ Sx ∩ Sy
such that ω(z) ⊂ Sx. Similarly, if ω(z) ⊂ Sy, we know by Proposition 5.1 3 that Ly is well-defined on ω(z)
and is continuous. Let v ∈ ω(z). From (5.13) we deduce that

∂

∂t
(Ly(Φt(z)))

=− µS
S(t)

(S(t)− S∗2 )2 − S∗2
∫ ∞

0

βy(a)y∗2(a)

[
g

(
S∗2
S(t)

)
g

(
y(t, a)

∫∞
0
βy(s)y∗2(s)ds

y∗2(a)
∫∞

0
βy(s)y(t, s)ds

)]
da ≤ 0 (5.15)

for any t ≥ 0. Thus Ly is a Lyapunov function on ω(z) for every z ∈ Sx ∩ Sy such that ω(z) ⊂ Sy.

5.2. Attractiveness

Using the Lyapunov functionals defined above, we can compute the basin of attraction of each equilibrium,
by means of the Lasalle invariance principle (see e.g. [37], Cor. 2.3).
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Theorem 5.4. The following hold:

1. if max{Rx0 , R
y
0} ≤ 1 then E0 is globally attractive in X+;

2. if Rx0 > max{1, Ry0} then E1 is globally attractive in Sx;
3. if Ry0 > max{1, Rx0} then E2 is globally attractive in Sy;
4. if Rx0 = Ry0 > 1, then {E∗α, α ∈ [1, 2]} is globally attractive in Sx ∩ Sy.

Proof.

1. Suppose that max{Rx0 , R
y
0} ≤ 1 and let z ∈ X+. By Proposition 4.4 7(a) and 7(b) we have ω(z) ⊂ ∂Sx ∩ ∂Sy

and limt→∞ ‖(Φxt ,Φ
y
t )‖L1(0,∞)×L1(0,∞) = 0. Using (1.1) we deduce that E0 is globally attractive in X+.

2. Suppose that Rx0 > max{1, Ry0}. We use the Lasalle invariance principle to prove the global attractiveness
of E1 in Sx. Let z ∈ Sx. From Proposition 4.4 6(a) and 8(b) we deduce that ω(z) ⊂ Sx. Consequently to
Proposition 5.1 2, for every v ∈ ω(z), the function t 7−→ Lx(Φt(v)) is constant. A differentiation w.r.t. t
implies that

d

dt
Lx(Φt(v)) = 0

for any t ≥ 0. From (5.12), we deduce that ΦSt (v) = S∗1 and Φyt (v) = 0 for any t ≥ 0. It follows from (1.1)
that v = {E1}, whence ω(z) ⊂ {E1} and E1 is globally attractive in Sx.

3. Suppose that Ry0 > max{1, Rx0}. Let z ∈ Sx. We know by Proposition 4.4 5(a) and 8(c) that ω(z) ⊂ Sy
and by Proposition 5.3 2, that Ly is a Lyapunov function on ω(z). From (1.1) and (5.13), we deduce that
v = {E2}, so that ω(z) ⊂ {E2}.

4. Suppose that Rx0 = Ry0 > 1. By Proposition 4.4 8(a) we know that ω(z) ⊂ Sx ∪ Sy. Suppose first that
ω(z) ⊂ Sx. Using Proposition 5.3 3, we know that Lx is a Lyapunov function on ω(z). As above, the Lasalle
invariance principle implies that t 7−→ Lx(Φt(v)) is constant for every v ∈ ω(z). Using (5.14), we obtain:

S(t) = S∗1 ,
x(t, a)

∫∞
0
βx(s)x∗1(s)ds

x∗1(a)
∫∞

0
βx(s)x(t, s)ds

= 1

for every t ≥ 0 and every a ≥ 0. We deduce that v ∈ {E∗α, α ∈ [1, 2]}, whence ω(z) ⊂ {E∗α, α ∈ [1, 2]}.
Similarly, if ω(z) ⊂ Sy, then using the Lyapunov function Ly on ω(z) and the Lasalle invariance principle,
we know that t 7−→ Ly(Φt(v)) is constant for every v ∈ ω(z). Using (5.15), we obtain:

S(t) = S∗2 =
1

ry
=

1

rx
= S∗1 ,

y(t, a)
∫∞

0
βy(s)y∗2(s)ds

y∗2(a)
∫∞

0
βy(s)y(t, s)ds

= 1

for every t ≥ 0 and every a ≥ 0. We deduce that v ∈ {E∗α, α ∈ [1, 2]}, whence ω(z) ⊂ {E∗α, α ∈ [1, 2]} and
this latter set is globally attractive in Sx ∩ Sy.

Remark 5.5. We can note that the first point could also be proved by using the Lyapunov functional L0.

5.3. Lyapunov stability

In this section, we handle the stability of E0 in the cases where the principle of linearisation (Prop. 3.3) fails.

Proposition 5.6. There hold that:

1. if max{Rx0 , R
y
0} = 1, then E0 is stable (in X+);

2. if Rx0 ≤ 1, then E0 is stable in ∂Sy;
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3. if Ry0 ≤ 1, then E0 is stable in ∂Sx.

To prove this result, we need to define the following sets:

Lη0 := {z ∈ R∗+ × L1
+(0,∞)× L1

+(0,∞) : L0(z) ≤ η}

and

B(E0, η) := {z ∈ X+ : ‖z − E0‖X ≤ η}

for any η > 0, and we give two lemmas (see e.g. [17], Proof of Thm. 1.2 and [41], Prop. 3.12).

Lemma 5.7. For every ε > 0, there exists η > 0 such that B(E0, η) ⊂ Lε0.

Proof. Let ε > 0, η > 0 and (Sη0 , x
η
0 , y

η
0 ) ∈ B(E0, η). We then have:

|Sη0 − S∗0 | ≤ η, ‖xη0‖L1(0,∞) ≤ η, ‖yη0‖L1(0,∞) ≤ η

whence

lim
η→0

Sη0 = S∗0 , lim
η→0
‖xη0‖L1(0,∞) = 0, lim

η→0
‖yη0‖L1(0,∞) = 0.

Moreover, for η > 0 small enough, we have Sη0 > 0, so that (Sη0 , x
η
0 , y

η
0 ) ∈ R∗+ × L1

+(0,∞) × L1
+(0,∞).

Consequently we get

lim
η→0

Λ

µS
g

(
Sη0
S∗0

)
= 0,

∫ ∞
0

Ψx(a)xη0(a)da ≤ ‖Ψx‖L∞(0,∞)‖xη0‖L1(0,∞) −−−−→
η→∞

0

and ∫ ∞
0

Ψy(a)xη0(a)da ≤ ‖Ψy‖L∞(0,∞)‖yη0‖L1(0,∞) −−−−→
η→∞

0.

We deduce that for η > 0 small enough, we have L0(Sη0 , x
η
0 , y

η
0 ) ≤ ε.

Since Ψx(0) = 1 and Ψy(0) = 1, we can find cψ > 0 such that

Ψ := min
a∈[0,cΨ]

{Ψx(a),Ψy(a)} > 0.

Lemma 5.8. For every ε > 0, there exists η > 0 such that for any (S0, x0, y0) ∈ Lη0, we have

‖S0 − S∗0‖ ≤ ε,
∫ cΨ

0

x0(a)da ≤ ε,
∫ cΨ

0

y0(a)da ≤ ε. (5.16)

Proof. Let ε > 0, η > 0 and z := (Sη0 , x
η
0 , y

η
0 ) ∈ Lη0 . We see that

S∗0g

(
Sη0
S∗0

)
≤ η,

∫ ∞
0

Ψx(a)xε0(a)da ≤ η,
∫ ∞

0

Ψy(a)yε0(a)da ≤ η.
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We deduce that∫ cΨ

0

xη0(a)da ≤ 1

Ψ

∫ cΨ

0

Ψx(a)xη0(a)da ≤ η

Ψ
,

∫ cΨ

0

yη0 (a)da ≤ 1

Ψ

∫ cΨ

0

Ψy(a)yη0 (a)da ≤ η

Ψ

and consequently we have

lim
η→0
|Sε0 − S∗0 | = 0, lim

η→0

∫ cΨ

0

xη0(a)da = 0, lim
η→0

∫ cΨ

0

yη0 (a)da = 0

which ends the proof.

Proof of Proposition 5.6. Let δ > 0 and ε > 0. From Lemma 5.8, there exists η > 0 such that for every
(S0, x0, y0) ∈ Lη0 , then (5.16) holds. Moreover, from Lemma 5.7, we know that there exists ν > 0 such that
B(E0, ν) ⊂ Lη0 . We can suppose without loss of generality that ν ≤ ε.

1. Suppose that max{Rx0 , R
y
0} = 1. Let z := (S0, x0, y0) ∈ B(E0, ν). Then z ∈ Lη0 and (5.16) holds. From

Proposition 5.1 1, we know that the function t 7−→ L0(Φt(z)) is non-increasing. Consequently, the set Lη0 is
positively invariant and Φt(z) ∈ Lη0 for every t ≥ 0. From Lemma 5.8, we obtain:

∣∣ΦSt (z)− S∗0
∣∣ ≤ ε, ∫ cΨ

0

Φxt (z)(a)da ≤ ε,
∫ cΨ

0

Φyt (z)(a)da ≤ ε, ∀t ≥ 0.

Let t ≥ 0. Using (2.4) we get:

‖Φxt (z)‖L1(0,∞) =

∫ t

0

Φxt (z)(a)da+

∫ ∞
t

Φxt (z)(a)da

≤
Nt∑
n=0

∫ (n+1)cΨ

ncΨ

Φxt (z)(a)da+ ‖x0‖L1(0,∞)e
−µ0t

≤
Nt∑
n=0

∫ c

0

Φxt−ncΨ(z)(a)e−µ0ncΨda+ νe−µ0t

≤ ε
Nt∑
n=0

(e−µ0cΨ)n + εe−µ0t ≤ ε

1− e−µ0cΨ
+ ε

where Nt = [ tcΨ ] is the integer part of t
cΨ

. Likewise, we get

‖Φyt (z)‖L1(0,∞) ≤
ε

1− e−µ0cΨ
+ ε.

It follows that

‖Φt(z)− E0‖X ≤ 3ε+
2ε

1− e−µ0cΨ

for every t ≥ 0. Finally, considering ε > 0 such that

3ε+
2ε

1− e−µ0cΨ
≤ δ

proves the stability of E0.
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2. Suppose that Rx0 > 1. Let z := (S0, x0, y0) ∈ B(E0, ν) ∩ ∂Sy. The former arguments and the fact that the
function t 7−→ L0(Φt(z)) is non-increasing imply that E0 is stable in ∂Sy whenever Rx0 > 1.

3. It follows from the last point and interchanging the index x and y.

While the stability of E0 in the critical cases are handled in the latter proposition, the question of the stability
of the set {E∗α, α ∈ [1, 2]} when Rx0 = Ry0 > 1 is open. The use of Lyapunov functional in the latter proof will
raise some problems due to the fact that Lx and Ly are not defined in X+.

5.4. Global asymptotic stability

We are ready to give the main result of the paper:

Theorem 5.9. The following hold:

1. E0 is G.A.S. in ∂Sx ∩ ∂Sy. Moreover, it is also G.A.S. in
(a) X+ if max{Rx0 , R

y
0} ≤ 1;

(b) ∂Sy if Rx0 ≤ 1;
(c) ∂Sx if Ry0 ≤ 1.

2. E1 is G.A.S. in:
(a) Sx if Rx0 > max{1, Ry0};
(b) Sx ∩ ∂Sy if Rx0 > 1;

3. E2 is G.A.S. in:
(a) Sy if Ry0 > max{1, Rx0};
(b) ∂Sx ∩ Sy if Ry0 > 1;

4. if Rx0 = Ry0 > 1, then {E∗α, α ∈ [1, 2]} is globally attractive in Sx ∩ Sy.

Proof.

1. The fact that E0 is G.A.S. in ∂Sx ∩ ∂Sy follows from Proposition 4.4 2.
(a) Suppose that max{Rx0 , R

y
0} ≤ 1. From Proposition 5.4 1, we know that E0 is globally attractive in X+.

Using Proposition 3.3 1 and Proposition 5.6, we deduce that E0 is Lyapunov stable, whence the global
asymptotic stability in X+.
(b) Suppose that Rx0 ≤ 1. It follows from Proposition 4.4 6(b) that E0 is globally attractive in ∂Sy, and
from Proposition 5.6 that E0 is stable in ∂Sy.
(c) When Ry0 ≤ 1, the result follows from Proposition 4.4 5(b) and Proposition 5.6.

2. (a) Suppose that Rx0 > max{1, Ry0}. The stability of E1 follows from Proposition 3.3 2, while the global
attractiveness in Sx comes from Theorem 5.4 2.
(b) Suppose that Rx0 > 1. We know by Proposition 4.4 6(a) that E1 is globally attractive in Sx ∩ ∂Sy.
Moreover, let z := (S0, x0, y0) ∈ Sx ∩ ∂Sy and denote by (S, x, y) ∈ C(R+,X+) the solution of (1.1). Since
∂Sy is positively invariant by Proposition 4.4 1, it follows that

∫ ∞
0

βy(a)y(t, a)da = 0

for any t ≥ 0, so that (S, x) satisfies (1.2). Let ε > 0. Since (S∗1 , x
∗
1) is Lyapunov table in {(S0, x0) ∈

R+ × L1
+(R+) :

∫ βx

0
x0(s)s > 0} by Proposition 1.2, then we can find η > 0 such that

‖(S0, x0)− (S∗1 , x
∗
1)‖R×L1(0,∞) ≤ η ⇒ ‖(ΦSt (z),Φxt (z))− (S∗1 , x

∗
1)‖R×L1(0,∞) ≤

ε

2
.
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Figure 2. Case Rx0 > max{Ry0 , 1}.

We also know that ‖Φyt (z)‖L1(0,∞) ≤ e−µ0t‖x0‖L1(0,∞) for any t ≥ 0 by using Proposition 4.4 6. Thus we
consider η̃ := min{η, ε/2} and we let z ∈ Sx ∩ ∂Sy such that ‖z − E1‖X ≤ η. We then have

‖Φt(z)− E1‖X = ‖(ΦSt (z),Φxt (z))− (S∗1 , x
∗
1)‖R×L1(0,∞) + ‖Φyt (z)‖L1(0,∞) ≤ ε

which proves the Lyapunov stability of E1 in ∂Sy and consequently the global stability.
3. (a) Suppose that Ry0 > max{1, Rx0}. From Proposition 3.3 3 and Theorem 5.4 3 we deduce that E2 is G.A.S.

in Sx.
(b) Similarly, when Ry0 > 1 the global stability is deduced from Proposition 4.4 5(a).

4. Suppose that Rx0 = Ry0 > 1, then the result derives from Theorem 5.4 4.

We can note that the global stability of endemic equilibria implies the persistent of the corresponding disease.

6. Numerical simulations and final remarks

We start this section by some illustrations of the main results. We plot the total quantity of individuals,
i.e. the L1-norm for x and y, in function of time. We also consider two different initial conditions (in line and
dotted line) in Sx ∩ Sy. In Figures 2 and 3, the competitive exclusion principle applies: the disease with the
biggest R0 value persists while the other one go extinct. In Figure 4, the two solutions (corresponding to both
initial conditions), converge to two different equilibria belonging to the set {E∗α, α ∈ [1, 2]}. We can note that
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Figure 3. Case Ry0 > max{Rx0 , 1}.

Figure 4. Case Rx0 = Ry0 > 1.

the results obtained in the paper could be extended to the general case (N ≥ 3):

dS

dt
(t) = Λ− µSS(t)− S(t)

N∑
n=1

∫ ∞
0

βxn
(a)xn(t, a)da,

∂xn
∂t

(t, a) +
∂xn
∂a

(t, a) = −µxn
(a)xn(t, a),

xn(t, 0) = S(t)
∫∞

0
βxn

(a)xn(t, a)da,

(S(0), x1(0, ·), · · · , xN (0, ·)) = (S0, x0
1, · · · , x0

N ) ∈ R+ × (L1
+(0,∞))N
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for every n ∈ J1, NK. As we noticed with (1.1), considering an initial condition in ∂Sxn
for some n ∈ J1, NK

amounts to study the N − 1 dimensional case. Therefore, even if the number of cases increase exponentially,
only the set Sx1 × · · · × SxN

is important for the initial conditions. In that situation, the competition exclusive
principle applies whenever there exists i ∈ J1, NK such that Rxi

0 > Rx,j0 for every j ∈ J1, NK \ {i}, that is: the
disease xi persists while all the other go extinct. When the maximum if not unique, we can prove the existence
of an infinite number of equilibria, that constitute a global attractive set, whose stability is an open problem.
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